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The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics.
Often the angular distributions are highly structured and the physical interpretation of this structure is an
important and difficult problem. Here, we report a surprising finding for the benchmark F + H2 f FH + H
reaction, when the product molecule FH is in a vibrational state with quantum number ) 3 and a rotational
state with quantum number ) 3. We demonstrate that the differential cross section (DCS) is an example of
(attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals
its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic
diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many
earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS
where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining
angular regions. The reaction investigated is F + H2(Vi ) 0, ji ) 0, mi ) 0) f FH(Vf ) 3, jf ) 3, mf ) 0)
+ H, where Vi, ji, mi and Vf, jf, mf are initial and final vibrational, rotational and helicity quantum numbers,
respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic)
techniques that provide physical insight as well as a mathematically sound and numerically accurate description
of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The
semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside
decomposition for the partial wave series of the F + H2 reaction, including the effect of one resummation.
We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and
find good agreement. Although our new rainbow has unusual and unexpected properties, similar rainbows
are predicted to occur in the DCSs of many state-to-state chemical reactions, since the semiclassical analysis
is generic and not specific to the present F + H2 example.

1. Introduction

Understanding the dynamics of chemical reactions is a subject
of fundamental importance in chemistry. Experiments can now
measure state-to-state angular distributions over an extended
energy range.1 In addition, there have been significant develop-
ments in computational algorithms for quantum reactive scat-
tering in the energy and time domains that are producing a
wealth of important numerical data. The most recent review of
theories of quantum reactive scattering is that by Hu and Schatz2

in 2006, which discusses about 600 papers published during
the last 20 years or so. Some more recent quantum calculations
of differential cross sections for chemical reactions can be found
in refs 3-23.

Hu and Schatz comment that experiments have often pro-
duced a wealth of data that theorists have taken decades to
understand, that new computations have frequently resulted in
“confusions” in their interpretation, and that many challenges
remain for theory.2 These comments certainly apply to the state-
to-state F + H2 f FH + H reaction, which has played a key
role in understanding the dynamics of exoergic reactions. It has
been extensively studied by theory and experiment for more
than 40 years.1,2 Of particular interest has been the angular
scattering associated with the FH (Vf ) 3) vibrational state, as

first measured in the classic crossed molecular-beam experiments
of Neumark et al.24 and more recently by Wang et al.25

The purpose of this paper is to report a surprising new finding
for the dynamics of the F + H2 reaction: We demonstrate that
the angular scattering of the FH (Vf ) 3) product is an example
of (attractive) rainbow scattering. We prove this result by taking
the semiclassical (i.e., asymptotic) limit of the (farside) scattering
amplitude and showing that it is characterized by an Airy
function and its first-order derivative. In particular, there is a
transition from the bright side of the rainbow to its dark side as
the reactive scattering angle increases. The rainbow is broad,
which explains why it has not been recognized in the many
earlier theoretical and experimental investigations. The rainbow
also reveals its presence by interference with the repulsive (or
nearside) scattering producing characteristic diffraction oscil-
lations in the differential cross section. We show there is an
angular region in the differential cross section where the rainbow
dominates, but with the unusual property that it is less intense
than in adjoining angular regions.

An important point is that we use rigorous semiclassical
techniques that provide a mathematically sound and numerically
accurate description of the angular scattering and avoid subjec-
tive interpretations. We refer to refs 26-31 for information on
the semiclassical techniques that we employ. These include the
asymptotic approximation of Legendre polynomials, the Poisson
series representation of the scattering amplitude, and the uniform
stationary phase evaluation of oscillating integrals. In addition,
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we refer to a recent review by Adam32 for an account of the
theory of rainbows at different levels of mathematical sophis-
tication; this review also describes many physical applications
of rainbow theory.

In the following, we consider the state-to-state reaction

where Vi, ji, mi and Vf, jf, mf are initial and final vibrational,
rotational and helicity quantum numbers respectively. The
relative translational energy is 0.119 eV, which corresponds to
a total energy of E ) 0.3872 eV measured with respect to the
minimum of the H2 potential energy curve. This combination
of collision parameters is an important contributor to the
experiment of Neumark et al.24 We denote the reactive scattering
angle by θR; that is, the angle between the outgoing FH molecule
and the incoming F atom in the center-of-mass collision frame.

Section 2 outlines the theoretical methods used. We begin
with the partial wave series representation of the scattering
amplitude and its decomposition into nearside and farside
subamplitudes. We also discuss the resummation of the partial
wave series prior to making the nearside-farside decomposition.
We also consider the related topic of nearside and farside local
angular momenta. Section 3 describes the rainbow that occurs
in the angular scattering of the F + H2 reaction and discusses
its properties. Section 4 contains our conclusions.

2. Theory

Our starting point is the reactive scattering amplitude, f(θR)
for which the corresponding differential cross section (DCS) is
given by

We first consider the partial wave series (PWS) representation
for f(θR), then its semiclassical (SC) limit. An important
technique we apply to both the PWS and SC representations of
f(θR) is that of nearside-farside (NF) analysis,33-61 which has
been reviewed in refs 58 and 62-64. Other recent applications
of NF theory can be found in refs 65-85.

A. Partial Wave Theory. (a) Scattering Amplitude and
Nearside-Farside Decomposition. Since the helicity quantum
numbers are both zero, we can expand f(θR) in a basis set of
Legendre polynomials, thereby obtaining the PWS representation
for f(θR). We have

where k is the initial translational wavenumber, J is the total
angular momentum quantum number, S̃J is the Jth modified
scattering matrix element, and PJ(•) is a Legendre polynomial
of degree J. For notational simplicity, the label Vi, ji, mi f Vf,
jf, mf has been omitted from f(θR) and S̃J, as has the label Vi, ji

from k. Below, we discuss a resummation of the PWS, then we
write eq 2 in the more compact form

where aJ ) (2J + 1)S̃J. Under semiclassical conditions, the PWS
in eqs 2 or 3 contains a large number of partial waves, typically
of order kR, where R is the reaction radius.

We will find in Section 3 that σ(θR) is structured and that
the structure contains important information on the dynamics
of the reaction. For this situation, it is helpful to make a NF
decomposition of f(θR). We write33-61

where the N, F subamplitudes are given by (θR * 0, π)

with86

and QJ(•) is a Legendre function of the second kind of degree
J. The corresponding N, F DCSs are then

and

respectively.
We will also discuss in Section 3 the full and N, F local

angular momenta (LAMs) for the reaction.49,50,52,55-61,73 The full
LAM is defined by

and the corresponding N, F LAMs by

In eqs 9 and 10, the arg is not necessarily the principal value in
order that the derivatives be well-defined.

(b) Resummation of the Scattering Amplitude and Near-
side-Farside Decomposition. We also investigate how the NF
DCSs change upon resumming the PWS in eq 2, since it is
known that a resummation can improve the physical effective-
ness of a NF decomposition.41,42,46,48-50,52,56,58,59 By “resumma-
tion”, we mean a rearrangement of the terms in a PWS to give
a new series in which the new terms have more desirable
properties. A spectacular example concerns scattering for a
Coulomb potential, for which the PWS is divergent, whereas
the resummed series is convergent. This example is discussed
in ref 49.

For one resummation, denoted R ) 1, the resummed
scattering amplitude has the representation49

F + H2 (Vi ) 0, ji ) 0, mi ) 0) f FH (Vf ) 3, jf ) 3,
mf ) 0) + H

σ(θR) ) |f(θR)|2 (1)

f(θR) ) (2ik)-1 ∑
J)0

∞

(2J + 1)S̃J PJ(cos θR) (2)

f(θR) ) (2ik)-1 ∑
J)0

∞

aJ PJ(cos θR) (3)

f(θR) ) fN(θR) + fF(θR) (4)

fN,F(θR) )
1

2ik ∑
J)0

∞

(2J + 1)S̃J QJ
(N,F)(cos θR) (5)

QJ
(N,F)(cos θR) )

1
2[PJ(cos θR) (

2i
π

QJ(cos θR)] (6)

σN(θR) ) |fN(θR)|2 (7)

σF(θR) ) |fF(θR)|2 (8)

LAM(θR) )
darg f(θR)

dθR
(9)

LAMN,F(θR) )
darg fN,F(θR)

dθR
(10)
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where

with a-1 ) 0. Equation 11 also assumes that 1 + �1 cos θR *
0. We determine the complex valued parameter, �1, in eqs 11
and 12 by solving aJ)0

(1) (�1) ) 0, which yields �1 ) -3a0/a1.
For the results in Section 3, we find �1 ) 0.999 + 0.166i. A
NF decomposition of eq 11 can also be made. We write

where the N, F R ) 1 resummed subamplitudes are given by
(θR * 0, π)

The corresponding N, F R ) 1 resummed DCSs are then

and

respectively. NF LAMs for R ) 1 can also be defined by
analogy with eq 10; namely,

Note that the full DCSs and LAMs for R ) 0 and R ) 1 are
numerically identical.

We will use the notation R ) 0 to indicate the unresummed
formulas of eqs 1-10.

B. Semiclassical Theory. (a) Definitions. This section
derives the F and N semiclassical subamplitudes, f +

SC(θR) and
f -

SC(θR), respectively,26-31,52 whose sum gives the SC ap-
proximation to the full scattering amplitude

Notice that we use ( to label the F and N SC subamplitudes,
respectively, to avoid confusion with the PWS f F,N(θR) and
f F,N(�1; θR) defined by eqs 5 and 14, respectively. The
corresponding full SC DCS is

and the F and N SC DCSs are given by

The full SC LAM is defined by

The F, N SC LAMs are defined in a way analogous to eq 21.
(b) Semiclassical Poisson Representation for the Scattering

Amplitude. We now begin the SC derivation. Since we are not
concerned with scattering into the angles θR ) 0 and θR ) π,
the first step26-31,52 in our SC analysis is to approximate the
Legendre polynomials in the PWS in eq 2 as the sum of two
traveling angular waves.

where λ ) J + 1/2. The SC (or asymptotic) approximation in
eq 22 is valid for λ sin θR . 1. If the approximation in eq 22
is used in eq 2, the exact and approximate DCSs are expected
to be almost indistinguishable, except for angles close to 0 and
π. We have confirmed this well-known result for the F + H2

reaction. Note that the approximation in eq 22 is also the first
step in Brink’s extensive development of semiclassical collision
theory in his monograph (ref 28, p 53). All semiclassical
approximations in the following based on eq 22 will begin with
the label “SC”.

In the second step,26-31,52 we apply the Poisson sum formula
and assume that real stationary phase points occur only in the
leading term, m ) 0 (see below for the justification of this
assumption for the F + H2 reaction). This lets us write the
resulting f SC(θR), for θR * 0, π as the sum of F and N
subamplitudes, f+SC(θR) + f-SC(θR), where52

with

In eq 24, S̃(λ) ≡ S̃λ-1/2 ) S̃J ) S̃(J) has been continued to
continuous values from half-integer values of λ ) 1/2, 3/2,
5/2, ... . We will refer to eqs 23 and 24 as SC Poisson (m ) 0)
representations of f (

SC(θR) and use the notations SC/F/Poisson and
SC/N/Poisson for the F and N contributions, respectively.

(c) Stationary Phase Condition. The third and crucial step
applies uniform stationary phase techniques to the I((θR) to
extract their physical content.26-31,52 Assuming that |S̃(λ)| is
slowly varying in eq 24, the stationary phase condition is

f(θR) )
1

2ik
1

1 + �1 cos θR
∑
J)0

∞

aJ
(1)(�1) PJ(cos θR)

(11)

aJ
(1)(�1) ) �1

J
2J - 1

aJ-1 + aJ + �1
J + 1

2J + 3
aJ+1

J ) 0, 1, 2, ... (12)

f(θR) ) fN(�1;θR) + fF(�1;θR) (13)

fN,F(�1;θR) )
1

2ik
1

1 + �1 cos θR
∑
J)0

∞

aJ
(1)(�1) QJ

(N,F)(cos θR)

(14)

σN(�1;θR) ) |fN(�1;θR)|2 (15)

σF(�1;θR) ) |fF(�1;θR)|2 (16)

LAMN,F(�1;θR) )
darg fN,F(�1;θR)

dθR
(17)

f SC(θR) ) f+
SC(θR) + f-

SC(θR) (18)

σSC(θR) ) |f SC(θR)|2 (19)

σ(
SC(θR) ) |f(

SC(θR)|2 (20)

LAMSC(θR) )
darg f SC(θR)

dθR
(21)

Pλ-1/2(cos θR) ∼ [ 1
2πλ sin θR]1/2{exp[i(λθR - 1

4
π)] +

exp[-i(λθR - 1
4

π)]} (22)

f(
SC(θR) )

1
ik

1
(2π sin θR)1/2

exp(-i
1
4

π)I((θR) (23)

I((θR) ) ∫0

∞
dλλ1/2|S̃(λ)|exp{i[arg S̃(λ) ( λθR]}

(24)

d
dλ[arg S̃(λ) ( λθR] ) 0 (25)
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Equation 25 can be written in the alternative form51,52

where we have introduced the quantum deflection function, Θ̃(λ)
≡ d arg S̃(λ)/dλ; it plays a fundamental role in the following.

To continue with the SC analysis, it is first essential to
examine the properties of Θ̃(λ) [or equivalently, Θ̃(J)]. Figure
1 plots graphs of Θ̃(J) vs J and also |S̃(J)| vs J for the F + H2

reaction. Our labeling for the real roots of eq 26 is also defined
in Figure 1a. A classical-like rainbow singularity occurs at
angles where d Θ̃(J)/dJ ) 0. Figure 1a shows there are three
rainbow singularities: one in the F scattering at Θ̃(J) ) -θR

r

and two in the N scattering at Θ̃(J) ) +θR
min and Θ̃(J) ) +θR

max.
Note that the three rainbow angles and Θ̃(J) have values between
-180° and +180°, which justifies keeping the leading term of
the Poisson sum (m ) 0) in the second step of the SC analysis.

We will discuss the evaluation of the F and N SC subam-
plitudes separately.

(d) Semiclassical Rainbow Analysis of the Farside Scat-
tering. The plot of Θ̃(J) vs J in Figure 1a has a minimum at
Θ̃(J) ) -θR

r ) -35.2° where J ) Jr ) 16.3. Note that a

(nonuniform) primitive stationary phase approximation (PSA)51

applied to the integral I+(θR) in eq 24 would be divergent at
the rainbow angle.

We first consider the bright side of the rainbow, where θR <
θR

r , and the stationary phase condition,

has two simple real roots that coalesce at θR ) θR
r . We denote

the two real roots of eq 27 by J2(θR) and J3(θR). They are
illustrated in the inset to Figure 1a. Equivalently, in λ space,
we have Θ̃(λ) ) -θR for λ ) λ2(θR) and λ ) λ3(θR).

The uniform Airy approximation is obtained when the
oscillating integral I+(θR) in eq 24 is evaluated by (uniform)
asymptotic techniques that allow for two real coalescing
stationary phase points.87 The uniform SC approximation for
this situation is given in the Appendix. Applying eqs A.2-A.4
to eqs 23 and 24, we obtain the following result for the uniform
Airy approximation when θR e θR

r

where

and

Note that ς(θR) g 0. The prime on the Airy function, Ai′(x),
means d Ai(x)/dx. The “classical-like” DCSs, σ2(θR) and σ3(θR),
in eq 28 are defined by

Equations 28-31 are valid on the bright side of the rainbow
and depend only on the properties of S̃(λ) at λ ) λ2(θR) and λ
) λ3(θR). The principle of asymptotic equiValence tells us that
the integral representation, SC/F/Poisson [i.e., eqs 23 and 24],
and the uniform Airy result (28) are equivalent under semiclas-
sical conditions, kR . 1. However a numerical evaluation of
eqs 23 and 24 by quadrature provides us with no physical
insight, in contrast to eqs 28-31, which show that the F
scattering is an example of an (attractive) Airy rainbow. We
will use the notation SC/F/uAiry for eqs 28-31.

We now consider the dark side of the rainbow, where θR >
θR

r . The roots of the stationary phase condition Θ̃(J) ) -θR

become complex valued, which are awkward to handle when

Figure 1. (a) Plot of the quantum deflection function, Θ̃(J), vs J. The
solid circles indicate integer values of J. The red dashed lines and red
arrows indicate θR

min, θR
max and Jmin, Jmax for the nearside scattering; the

blue dashed lines and blue arrows indicate -θR
r and Jr for the farside

scattering. The inset shows the labeling of the stationary phase points,
J1, J2, J3 that is used when θR < θR

r in the SC theory. (b) Plot of |S̃(J)|
vs J. The solid circles indicate integer values of J.

Θ̃(λ) ) -θR (26)

Θ̃(J) ) -θR (27)

f+
uAiry(θR) ) π1/2 exp{i[A(θR) - 3π/4]} ×

{[σ2(θR)1/2 + σ3(θR)1/2]ς(θR)1/4 Ai(-ς(θR)) +

i[σ2(θR)1/2 - σ3(θR)1/2] ς(θR)-1/4 Ai′(-ς(θR))} (28)

A(θR) )
1
2{arg S̃(λ2(θR)) + arg S̃(λ3(θR)) +

[λ2(θR) + λ3(θR)]θR} (29)

ς(θR) ) [3
4{arg S̃(λ2(θR)) - arg S̃(λ3(θR)) +

[λ2(θR) - λ3(θR)]θR}]2/3
(30)

σi(θR) )
λi(θR)|S̃(λi(θR))|2

k2 sin θR|dΘ̃(λ)
dλ |λ)λi(θR)

i ) 2, 3

(31)
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dealing with numerical input data. To avoid this problem, we
use a transitional Airy approximation,87 which is equivalent to
making a quadratic approximation for Θ̃(λ) about λ ) λr;
namely,

with λr ) Jr + 1/2 ) 16.8 and qr ) 0.606 rad. Applying eq A.5
of the Appendix to eqs 23 and 24, we obtain

We will use the abbreviation SC/F/tAiry for eqs 32 and 33.
Notice that eq 33 depends only on the properties of S̃(λ) at λ )
λr ) λr(θR

r ) and can be used on both the bright and dark sides
of the rainbow, as well as at θR ) θR

r . However, eq 33 is
expected to be most reliable for θR ≈ θR

r , where the Taylor
expansion in the approximate eq 32 is most accurate. The
dominant contribution to f +

tAiry(θR) comes from the Ai(•) term
in eq 33.

Also note the limit

Equation 34 is an important result, since eq 28 is numerically
indeterminate, 0/0, at θR ) θR

r () 35.2°) and in practice becomes
numerically unstable for θR ≈ θR

r . To avoid these numerical
problems, f +

uAiry(θR) is used for θR e 30°, and f +
tAiry(θR), for θR

> 30° in the calculations described in Section 3.
(e) Semiclassical Analysis of the Nearside Scattering. Fi-

nally, we consider the N SC subamplitude, f -
SC(θR), which has

the Poisson representation, SC/N/Poisson, of eqs 23 and 24.
The stationary phase condition for the integral I- (θR) in eq 24
is now

Figure 1a shows there are two rainbow singularities in the N
scattering: at Θ̃(J) ) +θR

min ) 57.1° for J ) Jmin ) 11.0 and
Θ̃(J) ) +θR

max ) 106.5° for J ) Jmax ) 12.6. Then for θR
min e

θR e θR
max, there are three real stationary phase points, two of

which coalesce at θR ) θR
min, and two coalesce when θR ) θR

max.
This situation corresponds semiclassically to the uniform
Pearcey approximation.88 Formally, we can write the asymptotic
relation

The principle of asymptotic equivalence again tells us that
the SC/N/Poisson representation (i.e., eqs 23 and 24) and the
uniform Pearcey result of eq 36 are equivalent under semiclas-

sical conditions, kR . 1. Now if the three real stationary phase
points for θR

min < θR < θR
max make comparable contributions to

f -
SC(θR), then we might expect an intense interference structure

in this angular range (for an example, see Figure 10 of ref 88
in a model curve-crossing study of He+ + Ne scattering).
However, we will see in Section 3 that this is not the case;
rather, the inner stationary phase point makes the dominant
contribution.

3. Results

In this section, we present and discuss our results for the N,
F and full SC DCSs and LAMs, which we compare with the
corresponding PWS quantities. We have also carefully checked
that the approximations used in the three steps of the SC theory
described in Section 2B are fully justified and numerically
accurate.

A. Full PWS DCS and Farside, Nearside, and Full SC
DCSs. Figure 2 plots the full PWS DCS (black curve, using
eqs 1 and 2) on a logarithmic scale for the F + H2 reaction
using an accurate set of scattering matrix elements,51,52 {S̃J} with
J ) 0, 1, 2, ..., 23 and S̃J ≡ 0 for J > 23 for the Stark-Werner
potential energy surface.89 There are 24 partial waves contribut-
ing to the PWS, and the semiclassical theory developed in
Section 2B is therefore applicable; that is, the reaction takes
place under semiclassical conditions, kR . 1. We also note from
the graph in Figure 1b that it is valid to assume |S̃(J)| varies
slowly with J. This has also been demonstrated earlier in ref
51.

There are two striking features in the PWS DCS: (1) an
intense peak at forward angles - this is a glory, as has been
proven by a uniform semiclassical analysis.51,53,54,56,60 (2) Dif-
fraction oscillations across the whole angular range; below, we
prove they arise from the NF interference of a F Airy rainbow
with the N scattering.

The two Airy curves, labeled SC/F/uAiry and SC/F/tAiry in
Figure 2 and drawn blue and purple dashed, respectively, are

Θ̃(λ) ≈ -θR
r + qr(λ - λr)2 where qr )

1
2

d2Θ̃(λ)

dλ2 |
λ)λr

(32)

f+
tAiry(θR) ) 1

k( 2πλr

sin θR
)1/2 |S̃(λr)|

qr
1/3

exp{i[arg S̃(λr) + λrθR - 3π/4]} ×

{Ai(θR - θR
r

qr
1/3 ) - i

qr
1/3[ 1

2λr
+ 1

|S̃(λr)|

d|S̃(λ)|
dλ |λ)λr

]Ai′(θR - θR
r

qr
1/3 )}

(33)

lim
θRfθR

r
f+

uAiry(θR) ) f+
tAiry(θR

r ) (34)

Θ̃(λ) ) +θR (35)

f-
SC(θR) ∼ uniform Pearcey semiclassical approximation

(36)

Figure 2. Plot of the logarithm of the differential cross section, log
σ(θR), vs reactive scattering angle, θR. Black curve: full PWS DCS
using eqs 1 and 2. Green dashed curve: full SC DCS using eqs 18 and
19. Blue curve: F uniform Airy SC DCS using eqs 20, 28-31. Purple
dashed curve: F transitional Airy SC DCS using eqs 20, 32 and 33.
Red curve: N Poisson SC DCS using eqs 20 and 23, together with
quadrature applied to the integral I- (θR) in eq 24. The two pink arrows
indicate the rainbow singularity at θR

r ) 35.2° which separates the bright
side of the rainbow, θR < θR

r , from its dark side, θR > θR
r .
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the uniform Airy and transitional Airy SC DCSs, respectively,
for the F scattering. It can be seen that the rainbow is broad
with the transition from the bright side to the dark side occurring
at θR

r ) 35.2° (indicated by a pink arrow on the upper and lower
abscissae). We note that the transitional Airy DCS merges
smoothly with the uniform Airy DCS; this tells us that the
second-order Taylor expansion (eq 32) used in the derivation
of the transitional Airy approximation87 is, indeed, valid for θR

≈ θR
r .The DCS calculated by the SC/F/Poisson approximation

is similar to the Airy DCSs and is not displayed.
The red curve in Figure 2 is the N SC cross section, calculated

by quadrature of the Poisson integral I- (θR) in eq 24 and labeled
SC/N/Poisson. It does not display any rapid oscillations; rather,
it varies relatively slowly with θR. This behavior is analyzed
further below. The minimum near θR ) 30° probably arises
from interference of the energy-domain analogues of time-direct
and time-delayed scattering, since a similar minimum occurs
in the N R ) 0 PWS DCS of the H + D2(Vi ) 0, ji ) 0) f
HD(Vf ) 3, jf ) 0) + D reaction, which has been analyzed in
detail in ref 61.

The dashed green curve in Figure 2 is the full SC DCS
calculated using eqs 18 and 19. We see that it agrees very closely
with the full PWS DCS for 1° j θR j 150°. This demonstrates
the accuracy of the SC theory developed in Section 2B and
proves that a F Airy rainbow does, indeed, contribute to the
DCS in this angular range. Note that the rainbow actually
dominates the angular scattering for 7° j θR j 43°, although
the intensity of the full DCS in this range is smaller than in the
two adjoining angular regions. This new rainbow is thus quite
different in its properties from the rainbows normally encoun-
tered in molecular collisions.32,36 The closest analogue is
probably diffractive elastic scattering (as illustrated, for example,
in Figures 4 and 5 of ref 90), where the F uniform Airy DCS
is also broad, similar to the graph of σ+

SC(θR) vs θR in Figure 2.
Although our new rainbow has unusual properties, similar
rainbows are expected to occur in the angular scattering of many
state-to-state chemical reactions, since the SC analysis is generic
and not specific to the present F + H2 example.

B. Additional Discussion. Inspection of Figure 2 shows that
the graph of σ-

SC(θR) vs θR, computed by quadrature of the
Poisson integral in eq 24 and labeled SC/N/Poisson, is almost
monotonic for θR

min < θR < θR
max. The reason for this can be seen

in the plot of |S̃(J)| vs J in Figure 1b: |S̃(J)| is much larger at
the inner stationary phase point than at the two outer stationary
phase points when θR

min < θR < θR
max. As a result, the inner

stationary phase point is the major contributor to f -
SC(θR), and

there are no strong interferences. This is confirmed by evaluating
f -

SC(θR) using the primitive stationary phase approximation
(PSA)51 for the inner stationary phase point when θR

min < θR <
θR

max: The resulting N PSA SC DCS is very similar to the SC/
N/Poisson curve in Figure 2.

We have also modified |S̃(J)| in Figure 1b so that it is
approximately bell-shaped, thereby increasing the contribution
of the two outer stationary phase points. However the resulting
PWS DCS still does not show pronounced interference structure
for θR

min < θR < θR
max characteristic of the Pearcey canonical

integral.88 Evidently, to observe a pronounced cusped rainbow
in the DCS requires more partial waves to contribute to the
scattering, as is the case for the He+ + Ne example of ref 88.

The divergence in the SC DCSs at θR ) 0° can be avoided
by using a uniform SC glory theory, which agrees very closely
with the full PWS DCS for 0° e θR j 10° (see Figure 5 of ref
51). The discrepancies between σSC(θR) and σ(θR) for θRJ 150°

arise mainly from neglect of the m ) -1 term in the Poisson
series representation for f(θR).

It was noted in Section 2B that the dominant contribution to
f +

tAiry(θR) comes from the term Ai((θR - θR
r )/qr

1/3) in eq 33. Now,
the first maximum of Ai(x) occurs close to x ) -1.02. Solving
(θR - θR

r )/qr
1/3 ) -1.02 for θR ∈ [-180°, 180°] gives for the

position of the rainbow maximum, θR ≈ -14°. This value is
outside the physical range of θR ∈ [0°, 180°] and emphasizes
that the F + H2 rainbow is a broad one.

A striking property of the F and N DCSs in Figure 2 is that
F scattering dominates over the N scattering for 7° j θR j
43°. Now, F scattering usually arises from attractive forces and
corresponds to surface waves (Regge states) that propagate
around the reaction zone and decay into the forward direction43,65

(in classical language, a short-lived rotating FHH complex). In
contrast, the N scattering usually arises from repulsive interac-
tions. It would be interesting to see if the relation between the
potential energy surface and these two reaction mechanisms
could be better understood by applying the plane wavepacket
theory of time dependent scattering to the F + H2 reaction and
constructing its semiclassical limit (see refs 57 and 61 for an
application to the H + D2 reaction.)

C. Comparison of N, F Resummed PWS DCSs with N, F
SC DCSs. In this section, we compare the NF R ) 0 and R )
1 PWS DCSs with the corresponding NF SC DCSs. The NF
PWS decompositions of eqs 4-6 for R ) 0 or eqs 13 and 14
for R ) 1 are not unique, and there is no guarantee that the
resulting NF analysis of structure in the full PWS DCS is
physically meaningful.49 If possible, it is important to check
whether the NF PWS decomposition being used is physically
meaningful or not. Fortunately, we can do this for the F + H2

reaction because in Section 2B, we derived the SC limits of
the N and F subamplitudes, which are unique. We thus have a
rare and valuable opportunity to assess the physical effectiveness
of the Fuller NF PWS decomposition. Comparing the SC and
PWS DCSs gives the following results:

(a) Comparison of Nearside Resummed PWS DCSs with
the Nearside SC DCS. Both the N R ) 0 (unresummed) and R
) 1 (resummed) PWS DCSs calculated using eqs 7 and 15,
respectively, agree very closely with the SC/N/Poisson DCS,
which is drawn as a red curve in Figure 2. Because of this close
agreement, the N R ) 0 and R ) 1 PWS DCSs are not shown
separately in Figure 2.

(b) Comparison of Farside Resummed PWS DCSs with the
Farside SC DCS. Figure 3 plots on a logarithmic scale the SC/
F/uAiry DCS (blue curve) and the SC/F/tAiry DCS (purple
dashed curve) joined at θR ) 30° vs θR together with the PWS/
F/R ) 0 DCS (black curve) and the PWS/F/R ) 1 DCS (blue
dashed-dotted curve) calculated using eqs 8 and 16, respec-
tively. We see that the F R ) 1 PWS DCS agrees better with
the Airy curve than does the F R ) 0 PWS DCS, especially for
θR J 33°. Observe that resummation of the PWS has removed
from the F R ) 0 PWS DCS some unphysical oscillations; this
operation is called “cleaning”.49 Differences between the two
F PWS curves and the Airy DCS are most pronounced at large
angles. However, in this angular range, Figure 2 shows that
σ+

SC(θR) , σ-
SC(θR), so these differences are not physically

significant because the numerical contribution of f F(θR) to f(θR)
is small. Note that the SC/F/tAiry DCS will itself have larger
errors for θR . θR

r because the second-order Taylor expansion
(32) on which it is based is most reliable for θR ≈ θR

r .
D. Comparison of N, F Resummed PWS LAMs with N,

F SC LAMs. The LAMs provide information on the value of
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the total angular momentum variable that contributes to the
scattering at an angle, θR.49 In Figure 4, we compare the R )
1 PWS and SC LAMs, both full and N, F; see eqs 9 and 17.
The SC LAMs are defined in a way analogous to the PWS
LAMs; for example,

See also eq 21. Note that the N, F SC LAMs are unique.
The full SC and PWS LAMs in Figure 4 are similar, and

their interference structure is consistent with the NF analysis
of the DCSs in Figures 2 and 3. In addition, the N, F R ) 1
PWS LAMs agree with the N, F SC LAMs, which provides
another important check that the PWS NF decomposition is
physically meaningful. Although The PWS/F/R ) 1 LAM
differs significantly from the SC/F/tAiry LAM for θR J 110°,
this occurs in an angular region where σF(�1; θR) , σN(�1; θR)
(see Figures 2 and 3), so it is not physically significant. Note
that PWS LAMs have previously been plotted and discussed in
Figures 3a and 4a of ref 52 for R ) 0, 1, and 2.

Inspection of Figure 4 shows that the F SC LAM is almost
constant with angle. This can be understood by examining eq
33 for f +

tAiry(θR). Since the Ai(•) term dominates in eq 33, we
have for the F SC LAM

which is a constant, independent of θR.
The N LAMs in Figure 4 decrease in magnitude for θR J

50°, which is typical for a reaction that is dominated by repulsive
interactions at large scattering angles.52 The minima near θR )
30° probably arise from interference of the energy-domain
analogues of time-direct and time-delayed scattering, since a
similar minimum occurs in the N R ) 0 PWS LAM of the H
+ D2 (Vi ) 0, ji ) 0) f HD (Vf ) 3, jf ) 0) + D reaction.61

4. Conclusions

We have derived the semiclassical (asymptotic) limit of the
scattering amplitude for the F + H2 (Vi ) 0, ji ) 0, mi ) 0) f
FH (Vf ) 3, jf ) 3, mf ) 0) + H reaction at a relative
translational energy of 0.119 eV. We discovered a surprising
new result: The angular scattering is an example of (attractive)
rainbow scattering. We proved this result by showing that the
(farside) semiclassical scattering subamplitude is characterized
by an Airy function and its first-order derivative, with the
transition from the bright side of the rainbow to its dark side
occurring at θR ) 35.2°. The rainbow is broad, which explains
why it has not been recognized in the many earlier theoretical
and experimental studies. The rainbow reveals its presence by
interference with the nearside scattering subamplitude, producing
characteristic diffraction oscillations in the full DCS. We showed
there is an angular region in the DCS where the rainbow
dominates, but with the unusual property that it is less intense
than in adjoining angular regions. Although the new rainbow
has unusual properties, similar rainbows are expected to occur
in the DCSs of many state-to-state chemical reactions, since
the semiclassical analysis is generic and not specific to the F +
H2 reaction.

We also used the semiclassical results to test the physical
effectiveness of the Fuller nearside-farside decomposition of
the partial wave series for the scattering amplitude. We
confirmed that the Fuller decomposition is physically meaningful
for the F + H2 reaction; moreover, the Fuller nearside-farside
DCSs can be cleaned of some unphysical oscillations by a
resummation of the partial wave series. We obtained similar
results for the nearside-farside local angular momenta.

Figure 3. Plot of the logarithm of the differential cross section, log
σF(θR) or log σ+

SC(θR) for the farside scattering, vs reactive scattering
angle, θR. Black curve: F R ) 0 PWS DCS using eqs 5 and 8. Blue
dashed-dotted curve: F R ) 1 PWS DCS using eqs 14 and 16. Blue
curve: F uniform Airy SC DCS using eqs 20 and 28-31. Purple dashed
curve: F transitional Airy SC DCS using eqs 20, 32, and 33. The two
pink arrows indicate the rainbow singularity at θR

r ) 35.2°, which
separates the bright side of the rainbow, θR < θR

r , from its dark side,
θR > θR

r .

Figure 4. Plot of the local angular momentum, LAM(θR), vs reactive
scattering angle, θR. Black curve: full PWS LAM(θR) using eqs 2 and
9. Blue dash-dot curve: F R ) 1 PWS LAM using eqs 14 and 17. Red
dashed-dotted curve: N R ) 1 PWS DCS using eqs 14 and 17. Green
dashed curve: full SC LAM using eq 21. Blue curve: F uniform Airy
SC LAM using eqs 28-31 and 37. Purple dashed curve: F transitional
Airy SC LAM using eqs 32, 33, and 38. Red curve: N Poisson SC
LAM using eqs 21 and 23, together with quadrature applied to the
integral I_(θR) in eq 24. The two pink arrows indicate the rainbow
singularity at θR

r ) 35.2° which separates the bright side of the rainbow,
θR < θR

r , from its dark side, θR > θR
r .

LAM+
uAiry(θR) )

darg f+
uAiry(θR)

dθR
(37)

LAM+
tAiry(θR) )

darg f+
tAiry(θR)

dθR
≈ λr ) 16.9 (38)

15304 J. Phys. Chem. A, Vol. 113, No. 52, 2009 Xiahou and Connor



Acknowledgment. Support of this research by the UK
Engineering and Physical Sciences Research Council is grate-
fully acknowledged.

Appendix

Here, we present the asymptotic formulas needed to evaluate
the integral I+(θR) in eq 24. In particular, we use results in
section IIIG of ref 87, which are based on the rigorous
asymptotic analysis of Chester et al.91 We consider the integral

where R is a real parameter, g(x) and f (R, x) are real valued
functions, and g(x) is slowly varying. We assume there exist
two (real) points of stationary phase, x2(R) and x3(R), which
are the solutions of f ′(R, x) ) 0, and which coalesce at x ) xr

≡ xr(Rr) when R ) Rr. The convenient notations xi ≡ xi(R), gi

≡ g(xi), f i ≡ f (R,xi), f i
′′ ≡ d2f (R, x)/dx2|x)xi

, etc., for i ) 2, 3,
r will be used in the following. It is also assumed that gi * 0,
∞ and f i

′′ * ∞.
The uniform Airy approximation for the case f 2

′′ e 0 and f 3
′′

g 0 is given by87

where

and

Note that ς(R) g 0. In eq A.2, the prime on the Airy function,
Ai′(x), means d Ai(x)/dx. If Ai(-ς) and Ai′(-ς) are replaced
by their asymptotic approximations valid for ς .1 in eq A.2,
then the primitive stationary phase result for I(R) is obtained.87

Equation A.2 becomes numerically indeterminate, 0/0, at the
point of coalescence, where f 2

′′ ) f 3
′′ ) f r

′′ ) 0 and ς(R) ) 0.To
overcome this problem, we use the transitional Airy approxima-
tion, which is obtained by Taylor expanding f (R, x) to third
order and g(x) to first order, about x ) xr in the integral in eq
A.1. The result is87

Notice that eq A.5 can be used on both the bright and dark
sides of the rainbow singularity because it only requires
information on g(x), f (R, x) and their derivatives at x ) xr.

The Airy rainbow formulas in Section 2 for the F SC
subamplitude, f +

SC(θR), are obtained by making the identifications
R f θR, x f λ, xi f λi for i ) 2, 3, r, g(x) f λ1/2|S̃(λ)|, and
f (R,x) f arg S̃(λ) + λθR in eqs A.1-A.5.
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(7) Gómez-Carrasco, S.; Roncero, O. J. Chem. Phys. 2006, 125

(054102), 1–14.
(8) Chu, T.-S.; Han, K.-L.; Hankel, M.; Balint-Kurti, G. G. J. Chem.

Phys. 2007, 126 (214303), 1–9.
(9) Koszinowski, K.; Goldberg, N. T.; Zhang, J.; Zare, R. N.;

Bouakline, F.; Althorpe, S. C. J. Chem. Phys. 2007, 127 (124315), 1–10.
(10) Lin, S. Y.; Guo, H.; Honvault, P.; Xu, C.; Xie, D. J. Chem. Phys.

2008, 128 (014303), 1–8.
(11) Banks, S. T.; Clary, D. C. Phys. Chem. Chem. Phys. 2007, 9, 933.
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